
March 2011Luiz DeRose © Cray Inc.

 Assist the user with application performance analysis and
optimization
• Help user identify important and meaningful information from

potentially massive data sets

• Help user identify problem areas instead of just reporting data

• Bring optimization knowledge to a wider set of users

 Focus on ease of use and intuitive user interfaces
• Automatic program instrumentation
• Automatic analysis

 Target scalability issues in all areas of tool development
• Data management

 Storage, movement, presentation

March 2011 2Luiz DeRose © Cray Inc.

 Supports traditional post-mortem performance analysis
• Automatic identification of performance problems

 Indication of causes of problems

 Suggestions of modifications for performance improvement

• Transitioning to an optimization guidance tool

 CrayPat
• pat_build: automatic instrumentation (no source code changes

needed)

• run-time library for measurements (transparent to the user)

• pat_report for performance analysis reports

• pat_help: online help utility

 Cray Apprentice2

• Graphical performance analysis and visualization tool

March 2011 Luiz DeRose © Cray Inc. 3

 CrayPat
• Instrumentation of optimized code

• No source code modification required

• Data collection transparent to the user

• Text-based performance reports

• Derived metrics

• Performance analysis

 Cray Apprentice2
• Performance data visualization tool

• Call tree view

• Source code mappings

March 2011 4Luiz DeRose © Cray Inc.

 When performance measurement is triggered
• External agent (asynchronous)

 Sampling

o Timer interrupt

o Hardware counters overflow

• Internal agent (synchronous)

 Code instrumentation

o Event based

o Automatic or manual instrumentation

 How performance data is recorded
• Profile ::= Summation of events over time

 run time summarization (functions, call sites, loops, …)

• Trace file ::= Sequence of events over time

March 2011 5Luiz DeRose © Cray Inc.

 Millions of lines of code
• Automatic profiling analysis

 Identifies top time consuming routines

 Automatically creates instrumentation template customized to your

application

 Lots of processes/threads
• Load imbalance analysis

 Identifies computational code regions and synchronization calls that could

benefit most from load balance optimization

 Estimates savings if corresponding section of code were balanced

 Long running applications
• Detection of outliers (coming soon)

March 2011 6Luiz DeRose © Cray Inc.

 Important performance statistics:

• Top time consuming routines

• Load balance across computing resources

• Communication overhead

• Cache utilization

• FLOPS

• Vectorization (SSE instructions)

• Ratio of computation versus communication

March 2011 Luiz DeRose © Cray Inc. 7

 No source code or makefile modification required
• Automatic instrumentation at group (function) level

 Groups: mpi, io, heap, math SW, …

 Performs link-time instrumentation
• Requires object files

• Instruments optimized code

• Generates stand-alone instrumented program

• Preserves original binary

• Supports sample-based and event-based instrumentation

March 2011 8Luiz DeRose © Cray Inc.

 Fortran
include “pat_apif.h”

…

call PAT_region_begin(id, “label”, ierr)

do i = 1,n

…

enddo

call PAT_region_end(id, ierr)

 C & C++
include <pat_api.h>

…

ierr = PAT_region_begin(id, “label”);

< code segment >

ierr = PAT_region_end(id);

March 2011 9Luiz DeRose © Cray Inc.

 Fortran
include “pat_apif.h”

…

call PAT_record(0) ! Disable

do i = 1,n

…

enddo

call PAT_record(1) ! Enable

 C & C++
include <pat_api.h>

…

ierr = PAT_record(0); /* Disable */

< code segment >

ierr = PAT_record(1); /* Enable */

March 2011 10Luiz DeRose © Cray Inc.

 MUST run on Lustre (/work/… , /lus/…, /scratch/…, etc.)

 Number of files used to store raw data

• 1 file created for program with 1 – 256 processes

• √n files created for program with 257 – n processes

• Ability to customize with PAT_RT_EXPFILE_MAX

March 2011 11Luiz DeRose © Cray Inc.

 Performs data conversion

• Combines information from binary with raw performance

data

 Performs analysis on data

 Generates text report of performance results

 Formats data for input into Cray Apprentice2

March 2011 12Luiz DeRose © Cray Inc.

 Analyze the performance data and direct the user to

meaningful information

 Simplifies the procedure to instrument and collect

performance data for novice users

 Based on a two phase mechanism
1. Automatically detects the most time consuming functions in the

application and feeds this information back to the tool for further (and

focused) data collection

2. Provides performance information on the most significant parts of the

application

March 2011 13Luiz DeRose © Cray Inc.

 Access performance tools software

% module load perftools

 Build application keeping .o files (CCE: -h keepfiles)

% make clean
% make

 Instrument application for automatic profiling analysis
• You should get an instrumented program a.out+pat

% pat_build –O apa a.out

 Run application to get top time consuming routines
• You should get a performance file (“<sdatafile>.xf”) or

multiple files in a directory <sdatadir>

% aprun … a.out+pat (or qsub <pat script>)

March 2011 Luiz DeRose © Cray Inc. 14

March 2011 Luiz DeRose © Cray Inc. Slide 15

 Generate report and .apa instrumentation file

% pat_report –o my_sampling_report [<sdatafile>.xf |
<sdatadir>]

 Inspect .apa file and sampling report

 Verify if additional instrumentation is needed
• Check the sampling report for possible regions to instrument with

the CrayPat API

Notes for table 1:

...

Table 1: Profile by Function

Samp % | Samp | Imb. | Imb. |Group
| | Samp | Samp % | Function
| | | | PE='HIDE'

100.0% | 775 | -- | -- |Total
|---
| 94.2% | 730 | -- | -- |USER
||--
|| 43.4% | 336 | 8.75 | 2.6% |mlwxyz_
|| 16.1% | 125 | 6.28 | 4.9% |half_
|| 8.0% | 62 | 6.25 | 9.5% |full_
|| 6.8% | 53 | 1.88 | 3.5% |artv_
|| 4.9% | 38 | 1.34 | 3.6% |bnd_
|| 3.6% | 28 | 2.00 | 6.9% |currenf_
|| 2.2% | 17 | 1.50 | 8.6% |bndsf_
|| 1.7% | 13 | 1.97 | 13.5% |model_
|| 1.4% | 11 | 1.53 | 12.2% |cfl_
|| 1.3% | 10 | 0.75 | 7.0% |currenh_
|| 1.0% | 8 | 5.28 | 41.9% |bndbo_
|| 1.0% | 8 | 8.28 | 53.4% |bndto_
||==
| 5.4% | 42 | -- | -- |MPI
||--
|| 1.9% | 15 | 4.62 | 23.9% |mpi_sendrecv_
|| 1.8% | 14 | 16.53 | 55.0% |mpi_bcast_
|| 1.7% | 13 | 5.66 | 30.7% |mpi_barrier_
|===

Samp % provides

absolute percentages

March 2011 16Luiz DeRose © Cray Inc.

Table 2: Profile by Group, Function, and Line

Samp % | Samp | Imb. | Imb. |Group
| | Samp | Samp % | Function
| | | | Source
| | | | Line
| | | | PE='HIDE'

100.0% | 777 | -- | -- |Total
|---
| 94.2% | 732 | -- | -- |USER
||--
|| 43.4% | 337 | -- | -- |mlwxyz_
3| | | | | ldr/mhd3d/src/mlwxyz.f
||||--
4||| 2.1% | 16 | 1.47 | 8.9% |line.39
4||| 2.8% | 22 | 2.25 | 9.7% |line.78
4||| 1.2% | 9 | 1.09 | 11.3% |line.116
4||| 1.4% | 11 | 1.22 | 10.5% |line.129
4||| 2.2% | 17 | 2.12 | 11.5% |line.139
. . .
4||| 2.7% | 21 | 0.84 | 4.0% |line.568
4||| 1.3% | 10 | 1.72 | 14.8% |line.604
4||| 2.4% | 19 | 0.72 | 3.7% |line.634
||||==
||||==
|| 16.1% | 125 | -- | -- |half_
3| | | | | ldr/mhd3d/src/half.f
||||--
4||| 5.4% | 42 | 6.41 | 13.8% |line.28
4||| 10.7% | 83 | 5.91 | 6.9% |line.40
||||==
|| 8.0% | 62 | -- | -- |full_
3| | | | | ldr/mhd3d/src/full.f
||||--
4||| 8.0% | 62 | 6.31 | 9.6% |line.22
||||==
. . .
||==
| 5.4% | 42 | -- | -- |MPI
||--
|| 1.9% | 15 | 4.62 | 23.9% |mpi_sendrecv_
||||--
||||==
|| 1.8% | 14 | 16.53 | 55.0% |mpi_bcast_
|| 1.7% | 13 | 5.66 | 30.7% |mpi_barrier_
|===

March 2011 17Luiz DeRose © Cray Inc.

You can edit this file, if desired, and use it

to reinstrument the program for tracing like this:

#

pat_build -O mhd3d.Oapa.x+4125-401sdt.apa

#

These suggested trace options are based on data from:

#

/home/crayadm/ldr/mhd3d/run/mhd3d.Oapa.x+4125-401sdt.ap2,

/home/crayadm/ldr/mhd3d/run/mhd3d.Oapa.x+4125-401sdt.xf

--

HWPC group to collect by default.

-Drtenv=PAT_RT_HWPC=1 # Summary with instructions metrics.

--

Libraries to trace.

-g mpi

--

User-defined functions to trace, sorted by % of samples.

Limited to top 200. A function is commented out if it has < 1%

of samples, or if a cumulative threshold of 90% has been reached,

or if it has size < 200 bytes.

Note: -u should NOT be specified as an additional option.

43.37% 99659 bytes

-T mlwxyz_

16.09% 17615 bytes

-T half_

6.82% 6846 bytes

-T artv_

1.29% 5352 bytes

-T currenh_

1.03% 25294 bytes

-T bndbo_

Functions below this point account for less than 10% of samples.

1.03% 31240 bytes

-T bndto_

. . .

--

-o mhd3d.x+apa # New instrumented program.

/work/crayadm/ldr/mhd3d/mhd3d.x # Original program.

March 2011 18Luiz DeRose © Cray Inc.

 adios Adaptable I/O System API

 armci Aggregate Remote Memory Copy

 blas Basic Linear Algebra subprograms

 caf Co-Array Fortran (Cray CCE compiler only)

 chapel Chapel language compile and runtime library API

 dmapp Distributed Memory Application API for Gemini network

 hdf5 manages extremely large and complex data collections

 heap dynamic heap

 io includes stdio and sysio groups

 lapack Linear Algebra Package

 mpi MPI

 omp OpenMP API and runtime library API (CCE and PGI only)

 shmem SHMEM

 upc Unified Parallel C (Cray CCE compiler only)

For a full list, please see man pat_build

March 2011 Luiz DeRose © Cray Inc. 19

March 2011 Luiz DeRose © Cray Inc. Slide 20

 Instrument application for further analysis (a.out+apa)

% pat_build –O <apafile>.apa

 Run application

% aprun … a.out+apa (or qsub <apa script>)

 Generate text report and visualization file (.ap2)

% pat_report –o my_text_report.txt [<datafile>.xf |
<datadir>]

 View report in text and/or with Cray Apprentice2

% app2 <datafile>.ap2

Table 1: Profile by Function Group and Function

Time % | Time |Imb. Time | Imb. | Calls |Group

| | | Time % | | Function

| | | | | PE='HIDE'

100.0% | 104.593634 | -- | -- | 22649 |Total

|--

| 71.0% | 74.230520 | -- | -- | 10473 |MPI

||---

|| 69.7% | 72.905208 | 0.508369 | 0.7% | 125 |mpi_allreduce_

|| 1.0% | 1.050931 | 0.030042 | 2.8% | 94 |mpi_alltoall_

||===

| 25.3% | 26.514029 | -- | -- | 73 |USER

||---

|| 16.7% | 17.461110 | 0.329532 | 1.9% | 23 |selfgravity_

|| 7.7% | 8.078474 | 0.114913 | 1.4% | 48 |ffte4_

||===

| 2.5% | 2.659429 | -- | -- | 435 |MPI_SYNC

||---

|| 2.1% | 2.207467 | 0.768347 | 26.2% | 172 |mpi_barrier_(sync)

||===

| 1.1% | 1.188998 | -- | -- | 11608 |HEAP

||---

|| 1.1% | 1.166707 | 0.142473 | 11.1% | 5235 |free

|==

March 2011 21Luiz DeRose © Cray Inc.

Table 4: MPI Message Stats by Caller

MPI Msg |MPI Msg | MsgSz | 4KB<= |Function

Bytes | Count | <16B | MsgSz | Caller

| | Count | <64KB | PE[mmm]

| | | Count |

15138076.0 | 4099.4 | 411.6 | 3687.8 |Total

|--

| 15138028.0 | 4093.4 | 405.6 | 3687.8 |MPI_ISEND

||---

|| 8080500.0 | 2062.5 | 93.8 | 1968.8 |calc2_

3| | | | | MAIN_

||||---

4||| 8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.0

4||| 8208000.0 | 2000.0 | -- | 2000.0 |pe.9

4||| 6160000.0 | 2000.0 | 500.0 | 1500.0 |pe.15

||||===

|| 6285250.0 | 1656.2 | 125.0 | 1531.2 |calc1_

3| | | | | MAIN_

||||---

4||| 8216000.0 | 3000.0 | 1000.0 | 2000.0 |pe.0

4||| 6156000.0 | 1500.0 | -- | 1500.0 |pe.3

4||| 6156000.0 | 1500.0 | -- | 1500.0 |pe.5

||||===

. . .

March 2011 22Luiz DeRose © Cray Inc.

March 2011Luiz DeRose © Cray Inc.

 AMD Opteron Hardware Performance Counters
• Four 48-bit performance counters.

 Each counter can monitor a single event

o Count specific processor events

» the processor increments the counter when it detects an occurrence of the

event

» (e.g., cache misses)

o Duration of events

» the processor counts the number of processor clocks it takes to complete an

event

» (e.g., the number of clocks it takes to return data from memory after a cache

miss)

• Time Stamp Counters (TSC)

 Cycles (user time)

March 2011 Luiz DeRose © Cray Inc. 24

 Common set of events deemed relevant and useful for
application performance tuning
• Accesses to the memory hierarchy, cycle and instruction counts,

functional units, pipeline status, etc.

• The “papi_avail” utility shows which predefined events are available on
the system – execute on compute node

 PAPI also provides access to native events
• The “papi_native_avail” utility lists all AMD native events available on

the system – execute on compute node

 Information on PAPI and AMD native events
• pat_help counters

• man papi_counters

• For more information on AMD counters:
 http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/26049.PDF

March 2011 Luiz DeRose © Cray Inc. 25

 PAT_RT_HWPC <set number> | <event list>
• Specifies hardware counter events to be monitored

 A set number can be used to select a group of predefined hardware

counters events (recommended)

o CrayPat provides 19 groups on the Cray XT systems

 Alternatively a list of hardware performance counter event names can be

used

o Both formats can be specified at the same time, with later definitions overriding

previous definitions

o A statistical (multiplexing) approach is used when more than 4 events are

provided

 Hardware counter events are not collected by default

March 2011 Luiz DeRose © Cray Inc. 26

March 2011 Luiz DeRose © Cray Inc. 27

Hardware performance counter events:
PAPI_L1_DCM Level 1 data cache misses
CYCLES_RTC User Cycles (approx, from rtc)
PAPI_L1_DCA Level 1 data cache accesses
PAPI_TLB_DM Data translation lookaside buffer misses
PAPI_FP_OPS Floating point operations

Estimated minimum overhead per call of a traced function,
which was subtracted from the data shown in this report
(for raw data, use the option: -s overhead=include):
PAPI_L1_DCM 8.040 misses
PAPI_TLB_DM 0.005 misses
PAPI_L1_DCA 474.080 refs
PAPI_FP_OPS 0.000 ops
CYCLES_RTC 1863.680 cycles
Time 0.693 microseconds

PAPI_TLB_DM Data translation lookaside buffer misses

PAPI_L1_DCA Level 1 data cache accesses

PAPI_FP_OPS Floating point operations

DC_MISS Data Cache Miss

User_Cycles Virtual Cycles

==

USER

--

Time% 98.3%

Time 4.434402 secs

Imb.Time -- secs

Imb.Time% --

Calls 0.001M/sec 4500.0 calls

PAPI_L1_DCM 14.820M/sec 65712197 misses

PAPI_TLB_DM 0.902M/sec 3998928 misses

PAPI_L1_DCA 333.331M/sec 1477996162 refs

PAPI_FP_OPS 445.571M/sec 1975672594 ops

User time (approx) 4.434 secs 11971868993 cycles 100.0%Time

Average Time per Call 0.000985 sec

CrayPat Overhead : Time 0.1%

HW FP Ops / User time 445.571M/sec 1975672594 ops 4.1%peak(DP)

HW FP Ops / WCT 445.533M/sec

Computational intensity 0.17 ops/cycle 1.34 ops/ref

MFLOPS (aggregate) 1782.28M/sec

TLB utilization 369.60 refs/miss 0.722 avg uses

D1 cache hit,miss ratios 95.6% hits 4.4% misses

D1 cache utilization (misses) 22.49 refs/miss 2.811 avg hits

==

March 2011 Luiz DeRose © Cray Inc. 28

PAT_RT_HWPC=1

Flat profile data

Hard counts

Derived metrics

March 2011 Luiz DeRose © Cray Inc. 29

==

USER

--

Time% 98.3%

Time 4.436808 secs

Imb.Time -- secs

Imb.Time% --

Calls 0.001M/sec 4500.0 calls

DATA_CACHE_REFILLS:

L2_MODIFIED:L2_OWNED:

L2_EXCLUSIVE:L2_SHARED 9.821M/sec 43567825 fills

DATA_CACHE_REFILLS_FROM_SYSTEM:

ALL 24.743M/sec 109771658 fills

PAPI_L1_DCM 14.824M/sec 65765949 misses

PAPI_L1_DCA 332.960M/sec 1477145402 refs

User time (approx) 4.436 secs 11978286133 cycles 100.0%Time

Average Time per Call 0.000986 sec

CrayPat Overhead : Time 0.1%

D1 cache hit,miss ratios 95.5% hits 4.5% misses

D1 cache utilization (misses) 22.46 refs/miss 2.808 avg hits

D1 cache utilization (refills) 9.63 refs/refill 1.204 avg uses

D2 cache hit,miss ratio 28.4% hits 71.6% misses

D1+D2 cache hit,miss ratio 96.8% hits 3.2% misses

D1+D2 cache utilization 31.38 refs/miss 3.922 avg hits

System to D1 refill 24.743M/sec 109771658 lines

System to D1 bandwidth 1510.217MB/sec 7025386144 bytes

D2 to D1 bandwidth 599.398MB/sec 2788340816 bytes

==

March 2011 Luiz DeRose © Cray Inc. 30

==

USER

--

Time% 98.4%

Time 4.426552 secs

Imb.Time -- secs

Imb.Time% --

Calls 0.001M/sec 4500.0 calls

RETIRED_MMX_AND_FP_INSTRUCTIONS:

PACKED_SSE_AND_SSE2 454.860M/sec 2013339518 instr

PAPI_FML_INS 156.443M/sec 692459506 ops

PAPI_FAD_INS 289.908M/sec 1283213088 ops

PAPI_FDV_INS 7.418M/sec 32834786 ops

User time (approx) 4.426 secs 11950955381 cycles 100.0%Time

Average Time per Call 0.000984 sec

CrayPat Overhead : Time 0.1%

HW FP Ops / Cycles 0.17 ops/cycle

HW FP Ops / User time 446.351M/sec 1975672594 ops 4.1%peak(DP)

HW FP Ops / WCT 446.323M/sec

FP Multiply / FP Ops 35.0%

FP Add / FP Ops 65.0%

MFLOPS (aggregate) 1785.40M/sec

==

March 2011 Luiz DeRose © Cray Inc. 31

==

USER

--

Time% 98.3%

Time 4.434163 secs

Imb.Time -- secs

Imb.Time% --

Calls 0.001M/sec 4500.0 calls

RETIRED_SSE_OPERATIONS:

SINGLE_ADD_SUB_OPS:

SINGLE_MUL_OPS 0 ops

RETIRED_SSE_OPERATIONS:

DOUBLE_ADD_SUB_OPS:

DOUBLE_MUL_OPS 225.224M/sec 998097162 ops

RETIRED_SSE_OPERATIONS:

SINGLE_ADD_SUB_OPS:

SINGLE_MUL_OPS:OP_TYPE 0 ops

RETIRED_SSE_OPERATIONS:

DOUBLE_ADD_SUB_OPS:

DOUBLE_MUL_OPS:OP_TYPE 445.818M/sec 1975672594 ops

User time (approx) 4.432 secs 11965243964 cycles 99.9%Time

Average Time per Call 0.000985 sec

CrayPat Overhead : Time 0.1%

==

March 2011 Luiz DeRose © Cray Inc. 32

==
USER / calc2_
--

Time% 28.2%
Time 0.600875 secs
Imb.Time 0.069872 secs
Imb.Time% 11.9%
Calls 864.9 /sec 500.0 calls
RETIRED_SSE_OPERATIONS:

SINGLE_ADD_SUB_OPS:
SINGLE_MUL_OPS 0 ops

RETIRED_SSE_OPERATIONS:
DOUBLE_ADD_SUB_OPS:
DOUBLE_MUL_OPS 369.139M/sec 213408500 ops

RETIRED_SSE_OPERATIONS:
SINGLE_ADD_SUB_OPS:
SINGLE_MUL_OPS:OP_TYPE 0 ops

RETIRED_SSE_OPERATIONS:
DOUBLE_ADD_SUB_OPS:
DOUBLE_MUL_OPS:OP_TYPE 369.139M/sec 213408500 ops

User time (approx) 0.578 secs 1271875000 cycles 96.2%Time

When compiled with fast:
==
USER / calc2_
--

Time% 24.3%
Time 0.485654 secs
Imb.Time 0.146551 secs
Imb.Time% 26.4%
Calls 0.001M/sec 500.0 calls
RETIRED_SSE_OPERATIONS:

SINGLE_ADD_SUB_OPS:
SINGLE_MUL_OPS 0 ops

RETIRED_SSE_OPERATIONS:
DOUBLE_ADD_SUB_OPS:
DOUBLE_MUL_OPS 208.641M/sec 103016531 ops

RETIRED_SSE_OPERATIONS:
SINGLE_ADD_SUB_OPS:
SINGLE_MUL_OPS:OP_TYPE 0 ops

RETIRED_SSE_OPERATIONS:
DOUBLE_ADD_SUB_OPS:
DOUBLE_MUL_OPS:OP_TYPE 415.628M/sec 205216531 ops

User time (approx) 0.494 secs 1135625000 cycles 100.0%Time

 The following thresholds are guidelines to identify if

optimization is needed:

• Computational Intensity: < 0.5 ops/ref

 This is the ratio of FLOPS by L&S

 Measures how well the floating point unit is being used

• FP Multiply / FP Ops or FP Add / FP Ops: < 25%

• Vectorization: < 1.5

March 2011 Luiz DeRose © Cray Inc. 33

 TLB utilization: < 90.0%

• Measures how well the memory hierarchy is being utilized with regards to TLB

• This metric depends on the computation being single precision or double precision

 A page has 4 Kbytes. So, one page fits 512 double precision words or 1024 single

precision words

• TLB utilization < 1 indicates that not all entries on the page are being utilized

between two TLB misses

 Cache utilization: < 1 (D1 or D1+D2)

• A cache line has 64 bytes (8 double precision words or 16 single precision words)

• Cache utilization < 1 indicates that not all entries on the cache line are being utilized

between two cache misses

 D1 cache hit (or miss) ratios: < 90% (> 10%)

 D1 + D2 cache hit (or miss) ratios: < 92% (> 8%)

• D1 and D2 caches on the Opteron are complementary

• This metric provides a view of the Total Cache hit (miss) ratio

March 2011 Luiz DeRose © Cray Inc. 34

March 2011Luiz DeRose © Cray Inc.

 Call graph profile

 Communication statistics

 Time-line view

• Communication

• I/O

 Activity view

 Pair-wise communication

statistics

 Text reports

 Source code mapping

 Cray Apprentice2

 is target to help identify

and correct:

• Load imbalance

• Excessive communication

• Network contention

• Excessive serialization

• I/O Problems

March 2011 36Luiz DeRose © Cray Inc.

March 2011 37Luiz DeRose © Cray Inc.

Switch Overview display

Function

List

Load balance overview:

Height Max time

Middle bar Average time

Lower bar Min time

Yellow represents

imbalance time

Zoom

Height exclusive time

Width inclusive time

DUH Button:

Provides hints

for performance

tuning

Filtered

nodes or

sub tree

March 2011 38Luiz DeRose © Cray Inc.

Function

List off

Right mouse click:

Node menu

e.g., hide/unhide

children

Sort options

% Time,

Time,

Imbalance %

Imbalance time

Right mouse click:

View menu:

e.g., Filter

March 2011 39Luiz DeRose © Cray Inc.

March 2011 Slide 40Luiz DeRose © Cray Inc.

March 2011 41Luiz DeRose © Cray Inc.

March 2011Luiz DeRose © Cray Inc.

 Increasing system software and architecture complexity
• Current trend in high end computing is to have systems with tens of

thousands of processors

 This is being accentuated with multi-core processors

 Applications have to be very well balanced in order to

perform at scale on these MPP systems
• Efficient application scaling includes a balanced use of requested

computing resources

 Desire to minimize computing resource “waste”
• Identify slower paths through code

• Identify inefficient “stalls” within an application

March 2011 Luiz DeRose © Cray Inc. 43

 Very few performance tools focus on load imbalance
• Need standard metrics

• Need intuitive way of presentation

 CrayPat support:
• MPI sync time

• Imbalance time and %

• MPI rank placement suggestions

• OpenMP Performance Metrics

 Cray Apprentice2 support:
• Load imbalance visualization

March 2011 Luiz DeRose © Cray Inc. 44

 Measure load imbalance in programs instrumented to trace

MPI functions to determine if MPI ranks arrive at collectives

together

 Separates potential load imbalance from data transfer

 Sync times reported by default if MPI functions traced

 If desired, PAT_RT_MPI_SYNC=0 deactivates this feature

March 2011 45Luiz DeRose © Cray Inc.

March 2011 Luiz DeRose © Cray Inc. 46

Table 1: Profile by Function Group and Function

Time % | Time | Imb. Time | Imb. | Calls |Group

| | | Time % | | Function

| | | | | PE='HIDE'

100.0% | 513.581345 | -- | -- | 368418.8 |Total

|---

| 69.5% | 356.710479 | -- | -- | 37064.0 |USER

||--

|| 24.9% | 127.809860 | 34.800347 | 21.5% | 1.0 |main

|| 23.7% | 121.692894 | 30.797216 | 20.3% | 480.0 |momtum_

|| 7.8% | 40.231832 | 14.622935 | 26.8% | 480.0 |cnuity_

|| 6.1% | 31.135595 | 16.354488 | 34.6% | 34174.0 |mod_xc_xctilr_

|| 5.9% | 30.404372 | 14.887689 | 33.0% | 482.0 |hybgen_

|| 1.1% | 5.435825 | 2.256039 | 29.4% | 1446.0 |dpudpv_

||==

| 24.7% | 127.038044 | -- | -- | 325626.8 |MPI

||--

|| 23.0% | 117.877116 | 307.988571 | 72.6% | 79473.6 |mpi_waitall_

|| 1.4% | 7.203319 | 5.428131 | 43.1% | 79470.8 |mpi_startall_

||==

| 5.8% | 29.832822 | -- | -- | 5728.0 |MPI_SYNC

||--

|| 4.9% | 25.147203 | 30.818426 | 55.3% | 2814.0 |mpi_allreduce_(sync)

|===

 Metric based on execution time

 It is dependent on the type of activity:
• User functions

Imbalance time = Maximum time – Average time

• Synchronization (Collective communication and barriers)

Imbalance time = Average time – Minimum time

 Identifies computational code regions and synchronization

calls that could benefit most from load balance optimization

 Estimates how much overall program time could be saved if

corresponding section of code had a perfect balance
• Represents upper bound on “potential savings”

• Assumes other processes are waiting, not doing useful work while

slowest member finishes

March 2011 47Luiz DeRose © Cray Inc.

March 2011 Luiz DeRose © Cray Inc. 48

AVG

PE 4

PE 3

PE 2

PE 1

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Between two barriers

User: Imb = Max-Avg = 99-40 = 59

MPI Sync: Avg = 59

MPI Sync+Comm: Avg-Min = 60-1 = 59
Avg Comm

Avg Sync

Avg User

MPI comm

MPI sync

User

 Represents % of resources available for parallelism that is

“wasted”

 Corresponds to % of time that rest of team is not engaged in

useful work on the given function

 Perfectly balanced code segment has imbalance of 0%

 Serial code segment has imbalance of 100%

Imbalance% =
Imbalance time

Max Time
X

N - 1

N
100 X

March 2011 49Luiz DeRose © Cray Inc.

March 2011 50Luiz DeRose © Cray Inc.

March 2011 51Luiz DeRose © Cray Inc.

March 2011 52Luiz DeRose © Cray Inc.

-1, +1

Std Dev

marks

Min, Avg, and Max

Values

 MPI rank placement with environment variable

0 1 2 34 5 6 7

 Distributed placement

 SMP style placement

0 2 4 61 3 5 7

 Folded rank placement

0 1 2 37 6 5 4

 User provided rank file

? ? ? ?? ? ? ?

Luiz DeRose © Cray Inc.March 2011 53

 When to use?
• Point-to-point communication consumes significant fraction of the

program time and have a significant imbalance
 pat_report -O mpi_sm_rank_order ...

• When there seems to be a load imbalance of another type
 Can get a suggested rank order file based on user time

o pat_report -O mpi_rank_order ...

• Can have a different metric for load balance
 pat_report -O mpi_rank_order -s mro_metric=DATA_CACHE_MISSES ...

 Information in resulting report
• Available if MPI functions traced (-g mpi)

• Custom placement files automatically generated
 Report provides quad core and dual core suggestions

o 2, 4, and 8 cores per node

• See table notes in resulting report for instructions on how to use

 Set MPICH_RANK_REORDER_METHOD environment variable
• Set to numerical value or MPICH_RANK_ORDER file from pat_report

March 2011 Luiz DeRose © Cray Inc. 54

pat_report -O load_balance

Table 2: Load Balance across PE's by FunctionGroup

Time % | Time | Calls |Group
| | | PE[mmm]

100.0% | 513.581345 | 368418.8 |Total
|--
| 69.5% | 356.710479 | 37064.0 |USER
||---------------------------------------
|| 0.3% | 441.604004 | 37064.0 |pe.73
|| 0.3% | 395.835561 | 37064.0 |pe.62
|| 0.0% | 23.942438 | 37064.0 |pe.184
||=======================================
| 24.7% | 127.038044 | 325626.8 |MPI
||---------------------------------------
|| 0.3% | 437.244595 | 239807.0 |pe.232
|| 0.1% | 90.023179 | 317002.0 |pe.12
|| 0.0% | 49.907519 | 317002.0 |pe.73
||=======================================
| 5.8% | 29.832822 | 5728.0 |MPI_SYNC
||---------------------------------------
|| 0.0% | 62.473245 | 5728.0 |pe.184
|| 0.0% | 27.165827 | 5728.0 |pe.25
|| 0.0% | 10.940857 | 5728.0 |pe.56
|==

March 2011 55Luiz DeRose © Cray Inc.

Notes for table 1:

To maximize the load balance across nodes,
specify a Rank Order with small Max and Avg USER Time
per node for the target number of cores per node.

To specify a Rank Order with a numerical value, set the environment
variable MPICH_RANK_REORDER_METHOD to the given value.

To specify a Rank Order with a letter value 'x', set the environment
variable MPICH_RANK_REORDER_METHOD to 3, and copy or link the file
MPICH_RANK_ORDER.x to MPICH_RANK_ORDER.

Table 1: Suggested MPI Rank Order
USER Time per MPI rank

Max Avg Max
USER Time USER Time Rank

1015754691532 820499583863 73

--

Four cores per node: USER Time per node

Rank Max Max/ Avg Avg/ Max Node
Order USER Time SMP USER Time SMP Ranks

d 3441386576933 85.0% 3281998335454 100.0% 113,227,115,197
0 3857929506520 95.3% 3281998335454 100.0% 49,112,174,236
2 3911647317171 96.7% 3281998335454 100.0% 57,67,182,191
1 4046815451585 100.0% 3281998335454 100.0% 72,73,74,75

--

Eight cores per node: USER Time per node

Rank Max Max/ Avg Avg/ Max Node
Order USER Time SMP USER Time SMP Ranks

d 6657050297152 82.8% 6563996670908 100.0% 130,195,65,214,136,178,190,0
0 7315118136737 91.0% 6563996670908 100.0% 18,50,81,112,143,174,205,236
2 7499444177191 93.3% 6563996670908 100.0% 30,32,93,94,155,156,217,218
1 8036827543002 100.0% 6563996670908 100.0% 72,73,74,75,76,77,78,79

March 2011 56Luiz DeRose © Cray Inc.

The custom rank placement in this file is the one labeled 'd'
in the report from:
#
pat_report -O mpi_rank_order \
/home/users/ldr/ldr/COE_Workshop/hycom/090921P+hycomBase.ap2
#
It targets multi-core processors, based on Time in USER group
collected for:
#
Program: hycom.2009Sep10.x
Number PEs: 249
Cores/Node: 4
#
To use this file, copy it to MPICH_RANK_ORDER and set the
environment variable MPICH_RANK_REORDER_METHOD to 3 prior
to executing the program.
#
46,126,32,176,109,224,48,243,39,142,154,220,137,21,174,140
36,151,155,242,15,219,133,177,110,108,134,100,25,118,132,148
130,195,65,214,136,178,190,0,61,141,54,167,162,161,189,122
111,183,35,3,163,129,50,199,93,84,88,29,246,26,153,168
38,196,182,210,156,30,51,5,81,231,64,159,24,179,49,239
104,95,175,143,206,120,152,215,80,217,135,4,13,31,34,228
37,169,66,211,157,83,172,203,92,226,53,234,201,86,188,7
180,238,52,139,138,229,33,193,45,194,94,166,207,205,173,185
63,204,18,11,14,164,97,241,131,123,99,22,102,101,98,149
40,107,223,85,103,202,76,212,82,247,67,70,124,208,79,144
105,235,89,160,119,87,78,192,181,10,55,127,20,221,77,225
191,9,44,209,23,106,96,233,60,187,17,146,170,244,57,145
112,150,43,117,236,216,56,6,47,8,19,121,116,12,58,198
16,27,42,186,158,230,218,248,41,1,245,165,62,200,59,213
114,2,91,28,128,125,75,232,222,147,90,71,171,69,72,240
113,227,115,197,237,68,74,184,73

March 2011 57Luiz DeRose © Cray Inc.

$./grid_order

Usage: grid_order -C|-R [-P|-Z] -g N1,N2,...
-c n1,n2,... [-o d1,d2,...]
[-m max] [-n ranks_per_line] [-T] [i1 i2 ...]

This program can be used to generate a rank order list for an MPI
application that uses communication between nearest neighbors
in a grid. Note that this grid is a 'virtual' topology in the
application's logic, not the physical topology of the machine
on which it executes. But it is assumed that ranks in the
list will be packed onto machine nodes in the order given.

You must specify either -C or -R for column- or row-major numbering.
For example, if the application uses a 2 or 3 dimensional grid, then
use -C if it assigns MPI rank 1 to position (1,0) or (1,0,0), but
use -R if it assigns MPI rank 1 to position (0,1) or (0,0,1).
To see the difference, compare the output from:

grid_order -C -g 4,6
grid_order -R -g 4,6

The terms seem backwards if (1,0) is interpreted as x,y coordinates,
but natural if interpreted as array indices in Fortran or C.
Their usage here follows the definition of row-major numbering
for a 'Cartesian virtual topology' in the MPI standard.

For an application based on an N by M grid that uses column-major
numbering and is run on six-core processors, either of the options:

-C -c 2,3 -g N,M
-C -c 3,2 -g N,M

will produce a list of ranks suitable for the MPICH_RANK_ORDER file,
such that blocks of 6 nearest neighbors are placed on each processor.
If the same application is run on nodes containing two six-core
processors, you could use -c 3,4 or -c 4,3. If possible, order the
-c numbers so that each evenly divides the corresponding -g number.

For an N by M by L grid with row-major numbering, and nodes with
two six-core processors, one of the following can be used:

-R -c 2,2,3 -g N,M,L
-R -c 2,3,2 -g N,M,L
-R -c 3,2,2 -g N,M,L

…

March 2011 58Luiz DeRose © Cray Inc.

March 2011Luiz DeRose © Cray Inc.

 Software package information
• Use avail, list or help parameters to module command

• „module help perftools‟ shows release notes

 craypat version (same for pat_build, pat_report, pat_help)

% pat_build –V

CrayPat/X: Version 5.1 Revision 6438 12/10/10 13:37:21

 Cray Apprentice2 version
• Displayed in top menu bar when running GUI

March 2011 Luiz DeRose © Cray Inc. 60

ldr@crow:~> module help perftools/5.1.2

----------- Module Specific Help for 'perftools/5.1.2' ------------

===

Perftools 5.1.2

===============

Release Date: September 16, 2010

==

A license key must be installed on a FLEXnet server prior to using

perftools

==

Purpose:

Differences between CrayPat 5.1.1 release and 5.1.2 release

CrayPat 5.1.1 release revision: 3618

CrayPat 5.1.2 release revision: 3746

Bugs closed since 5.1.1 release (August 19, 2010)

. . .

Known Problem(s)

. . .

Product and OS Dependencies:

. . .

March 2011 61Luiz DeRose © Cray Inc.

 User guide
• http://docs.cray.com

• Click on “Latest Docs” and choose “Performance Tools 5.0”

 Man pages

 To see list of reports that can be generated

% pat_report –O –h

 Notes sections in text performance reports provide

information and suggest further options

March 2011 Luiz DeRose © Cray Inc. 62

http://docs.cray.com/

 Cray Apprentice2 panel help

 pat_help – interactive help on the Cray Performance toolset

 FAQ available through pat_help

March 2011 Luiz DeRose © Cray Inc. 63

 intro_craypat(1)
• Introduces the craypat performance tool

 pat_build
• Instrument a program for performance analysis

 pat_help
• Interactive online help utility

 pat_report
• Generate performance report in both text and for use with GUI

 hwpc(3)
• describes predefined hardware performance counter groups

 papi_counters(5)
• Lists PAPI event counters

• Use papi_avail or papi_native_avail utilities to get list of events when

running on a specific architecture

March 2011 Luiz DeRose © Cray Inc. 64

March 2011 Luiz DeRose © Cray Inc. 65

March 2011 Slide 66

CrayPat/X: Version 5.0 Revision 2631 (xf 2571) 05/29/09 14:54:00

Number of PEs (MPI ranks): 48

Number of Threads per PE: 1

Number of Cores per Processor: 4

Execution start time: Fri May 29 15:31:49 2009

System type and speed: x86_64 2200 MHz

Current path to data file:

/lus/nid00008/homer/sweep3d/sweep3d.mpi+samp.rts.ap2 (RTS)

Notes:

Sampling interval was 10000 microseconds (100.0/sec)

BSD timer type was ITIMER_PROF

Trace option suggestions have been generated into a separate file

from the data in the next table. You can examine the file, edit

it if desired, and use it to reinstrument the program like this:

pat_build -O sweep3d.mpi+samp.rts.apa

Luiz DeRose © Cray Inc.

 Interactive by default, or use trailing '.' to just print a topic:

 New FAQ craypat 5.0.0.

 Has counter and counter group information

% pat_help counters amd_fam10h groups

March 2011 Luiz DeRose © Cray Inc. 67

March 2011 Luiz DeRose © Cray Inc.

The top level CrayPat/X help topics are listed below.
A good place to start is:

overview

If a topic has subtopics, they are displayed under the heading
"Additional topics", as below. To view a subtopic, you need
only enter as many initial letters as required to distinguish
it from other items in the list. To see a table of contents
including subtopics of those subtopics, etc., enter:

toc

To produce the full text corresponding to the table of contents,
specify "all", but preferably in a non-interactive invocation:

pat_help all . > all_pat_help
pat_help report all . > all_report_help

Additional topics:

API execute
balance experiment
build first_example
counters overview
demos report
environment run

pat_help (.=quit ,=back ^=up /=top ~=search)
=>

68

March 2011 Luiz DeRose © Cray Inc.

pat_help (.=quit ,=back ^=up /=top ~=search)
=> FAQ
Additional topics that may follow "FAQ":

Application Runtime Miscellaneous
Availability and Module Environment Processing Data with pat_report
Building Applications Visualizing Data with Apprentice2
Instrumenting with pat_build

pat_help FAQ (.=quit ,=back ^=up /=top ~=search)
=> I
Additional topics that may follow ""Instrumenting with pat_build"":

1. Can not access the file ...
2. ERROR: Missing required ELF section 'link information' from the program 'FILE'.
3. ERROR: Missing required ELF section 'string table' from the program '...'.
4. FATAL: The link information was not found in the .note section of ...
5. How can I find out the text size of functions?
6. How can I list trace points from my instrumented binary?
7. How can I lower the size of data files with pat_build?
8. How can I NOT instrument some of my object file(s)?
9. How do I get MPI rank order suggestions?

10. How do I specify a directory containing object files?
11. My error messaage is "xyz can not be traced because ... not writable"
12. Problems with instrumented programs using both MPI and OpenMP?
13. User sampling with compiler hooks present is not allowed
14. WARNING: Entry point 'FUNCTION' can not be traced because it is a locally

defined function
15. WARNING: The function 'FUNCTION' can not be traced because a trace wrapper

was not successfully created
16. What is APA?
17. Why am I getting an error with userTraceFunctions.c?
18. Why does my binary take longer to run when using 'pat_build -u'?

pat_help FAQ "Instrumenting with pat_build"
(.=quit ,=back ^=up /=top ~=search) =>

69

March 2011 Luiz DeRose © Cray Inc.

pat_help FAQ "Instrumenting with pat_build"

(.=quit ,=back ^=up /=top ~=search) => 4

FATAL: The link information was not found in the .note section of ...

If an executable is compiled and linked without the xt-craypat module

loaded, then it will not contain link information needed by pat_build,

which will issue an error message and exit.

To verify that an executable was built with the link information that

pat_build requires, use

readelf -S $executable

It should show a .note section with a size of several kilobytes, say

section 19, and the output from

readelf -x 19 $executable

should contain the string 'Cray Inc' and library paths.

pat_help FAQ "Instrumenting with pat_build"

(.=quit ,=back ^=up /=top ~=search) =>

70

1. Generate an “.apa” file and a sampling report from your application

2. Read the “.apa” file and add I/O instrumentation

3. Use the .apa file to generate a profile of the application

4. Look at the sampling report and identify areas where work is concentrated.
Using the CrayPat API add instrumentation around the important loop(s)

5. Generate a second profile of the application with code regions

6. Obtain MFLOPS, TLB Utilization, Cache Hit/Miss ratios (L1 and L2), Cache

utilization (L1, and L2), FP Mix, and Vectorization information for the main

regions and functions of the application

7. Visualize the performance file (.ap2) with Cray Apprentice2 and identify the

most imbalanced function or region of the application

8. Generate a trace file of the application (if the application is large, limit the size

of the trace file)

9. Visualize the trace file with Cray Apprentice2

10. Optimize your application with the data that you collected

March 2011 71Luiz DeRose © Cray Inc.

March 2011Luiz DeRose © Cray Inc.

